Acta Crystallographica Section C Crystal Structure Communications

ISSN 0108-2701

2,2'-Diselenobis(4,4-diphenylcyclohexa-2,5-dienone)

V. S. Senthil Kumar and Ashwini Nangia*

School of Chemistry, University of Hyderabad, Hyderabad 500 046, India Correspondence e-mail: ansc@uohyd.ernet.in

Received 6 July 1999 Accepted 7 October 1999

The title compound, $C_{36}H_{26}O_2Se_2$, displays crystallographic twofold symmetry. The packing involves corrugated linear ribbons mediated through $C-H\cdots O$ and $C-H\cdots Se$ interactions. The ribbons are connected through $C-H\cdots \pi$ interactions.

Comment

The role of weak hydrogen bonds such as $C-H\cdots O$, $C-H\cdots \pi$, or in general $C-H\cdots X$ (X = heteroatom or metal) and $X\cdots X$ interactions in the stabilization of crystal structures is a theme of current interest (Desiraju & Steiner, 1999). In this context, the crystal structure of the title compound, (I), is pertinent because it has phenyl C-H donor groups, carbonyl acceptor atoms and an Se-Se bond.

The molecular structure of (I) is shown in Fig. 1 (Johnson, 1976). The molecule lies on a twofold axis that bisects the Se1–Se1' bond [symmetry code: (') $\frac{3}{2} - x$, $\frac{1}{2} - y$, z]; the asymmetric unit contains half a molecule of (I). The cyclohexa-2,5-dienone ring forms dihedral angles of 58.1 (1) and 89.85 (1)° with the two phenyl rings (C7–C12 and C13–C18). The diselenide geometry in (I) is normal, with an Se1–Se1' bond length of 2.3229 (6) Å and a C2–Se1–Se1'–C2' torsion angle of 79.35 (8)°. These values are comparable with those found in the crystal structure of dimesityl diselenide reported recently by Jeske *et al.* (1998) [Se–Se 2.3341 (6) Å and C–Se–Se–C 83.96 (12)°].

In the crystal structure of (I), space group *Pccn*, inversion related molecules are connected through $C-H\cdots O$ and $C-H\cdots Se$ interactions (Iwaoka & Tomoda, 1994; Narayanan *et al.*, 1998) to produce a corrugated ribbon-like structure in (101) [C16-H16A…O1 2.82 Å, 125°; C17-H17A…Se1

Figure 1

ORTEPII (Johnson, 1976) plot and atom-numbering scheme [symmetry code: (') $\frac{3}{2} - x, \frac{1}{2} - y, z$] for (I). Displacement ellipsoids are drawn at the 50% probability level.

3.10 Å, 141°] (Fig. 2). Such ribbons are connected by chains of C–H···O and C–H··· π interactions along [001] through the C5 and C6 H atoms of the cyclohexa-2,5-dienone as donors and the carbonyl group and phenyl ring as acceptors [C5–H5A···O1 2.93 Å, 157°; C6–H6A··· $\pi_{centroid}$ 2.57 Å, 153°]. The hydrogen bonds in this study have been considered with liberal distance and angle cut-off criteria of 2.0 < H···O < 3.0 Å and 120 < C–H···O < 180°, as advocated by Desiraju & Steiner (1999).

The approach of electrophilic and nucleophilic groups (X) to divalent Se (Y-Se-Z) has been discussed by Ramasubbu & Parthasarathy (1987) and categorized as type I or type II depending on whether the approaching atom is normal to the selenide plane and along the Se lone pair orbital ($\langle \theta \rangle = 23^\circ$)

Figure 2

A view of (I) showing the corrugated ribbons connected by $C-H\cdots O$ and $C-H\cdots Se$ hydrogen bonds along [100]. Se atoms are shown as large hatched circles and O atoms as small crossed circles. The $C-H\cdots O$ and $C-H\cdots \pi$ interactions along [001] are omitted for clarity.

or in the plane and along the C–Se σ^* antibonding orbital $(\langle \theta \rangle = 79^{\circ})$. In the spherical coordinate system, θ is the polar angle between the direction $X \cdot \cdot \cdot Se$ and the normal to the Y-Se-Z selenide plane. There are two interactions in (I) involving the Se atom that deserve a mention. In the C17-H17A···Se1 interaction, the C-H group approaches the Se acceptor along the direction for electrophilic donors with θ = 18.5°. Interestingly, the structure also has a C-Se $\cdot \cdot \pi_{centroid}$ contact of 3.59 Å (166.4 $^{\circ}$), which is shorter than the sum of the van der Waals radii (Se 2.0 and C 1.7 Å). The approach of the phenyl ring is in the C-Se-Se plane and from behind the C-Se bond, *i.e.* it is a type II contact with $\theta = 83.9^{\circ}$. Based on this approach geometry, the interaction could be viewed as electrophile–nucleophile pairing, *i.e.* Se(δ +)··· $\pi(\delta$ –). Thus, the stereochemical distribution of charge density at Se and its behaviour both as a donor and as an acceptor in the crystal structure of (I) are rationalized.

Experimental

Compound (I) was obtained as an unexpected product in 60% yield during the SeO_2 oxidation of 4,4-diphenyl-2-cyclohexenone (Zimmerman & Schuster, 1962). Yellow crystals of (I) were obtained upon crystallization from ethyl acetate and hexane (m.p. 483 K).

Crystal data

$C_{36}H_{26}O_2Se_2$	Mo $K\alpha$ radiation
$M_r = 648.49$	Cell parameters from 1650
Orthorhombic, Pccn	reflections
a = 17.4144 (16) Å	$\theta = 2.19 - 26.43^{\circ}$
b = 10.6767 (10) Å	$\mu = 2.646 \text{ mm}^{-1}$
c = 15.2187 (14) Å	T = 168 (2) K
V = 2829.6 (5) Å ³	Plate, yellow
Z = 4	$0.8 \times 0.5 \times 0.14 \text{ mm}$
$D_x = 1.522 \text{ Mg m}^{-3}$	

Data collection

Siemens CCD area detector diffractometer φ and ω scans Absorption correction: multi-scan (*SADABS*; Blessing, 1995) $T_{\min} = 0.218, T_{\max} = 0.690$ 29 316 measured reflections

Refinement

Refinement on F^2 $R[F^2>2\sigma(F^2)] = 0.031$ $wR(F^2) = 0.086$ S = 1.0602839 reflections 181 parameters Plate, yellow $0.8 \times 0.5 \times 0.14 \text{ mm}$ 2839 independent reflections 2412 reflections with $I > 2\sigma(I)$ $R_{int} = 0.026$ $\theta_{max} = 26.43^{\circ}$ $h = -21 \rightarrow 10$

$n = -21 \rightarrow 10$	
$k = -13 \rightarrow 13$	
$l = -18 \rightarrow 18$	

H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.05P)^2 + 1.9536P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = -0.002$ $\Delta\rho_{max} = 0.55 \text{ e} \text{ Å}^{-3}$ $\Delta\rho_{min} = -0.73 \text{ e} \text{ Å}^{-3}$

Table 1

Hydrogen-bonding geometry (Å, $^{\circ}$).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C5-H5A\cdotsO1^{i}$	0.95	2.93	3.82 (3)	157
$C16-H16A\cdotsO1^{ii}$	0.95	2.82	3.463 (3)	125
$C17 - H17A \cdots Se1^{ii}$	0.95	3.10	3.886 (2)	141

Symmetry codes: (i) $1 - x, y - \frac{1}{2}, \frac{1}{2} - z$; (ii) 1 - x, -y, -z.

All the H atoms have been generated at idealized geometries and refined isotropically using a riding model.

Data collection: *SMART* (Siemens, 1995); cell refinement: *SMART*; data reduction: *SHELXTL* (Siemens, 1994); program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1990); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *ORTEP*II (Johnson, 1976) and *PLUTON* (Spek, 1992); software used to prepare material for publication: *SHELXL*97.

We thank Professor W. T. Robinson and Dr R. Kadirvelraj (University of Canterbury, New Zealand) for X-ray data collection. VSSK thanks the CSIR (1/1431/96/EMR-II) for fellowship support. We thank Professor G. R. Desiraju for discussions.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: JZ1370). Services for accessing these data are described at the back of the journal.

References

- Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
- Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology, pp. 40–68. Oxford University Press.
- Iwaoka, M. & Tomoda, S. (1994). J. Am. Chem. Soc. 116, 4463-4464.
- Jeske, J., Martens-von Salzen, A., du Mont, W.-W. & Jones, P. G. (1998). Acta Cryst. C54, 1873–1875.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Narayanan, S. J., Sridevi, B., Chandrashekar, T. K., Vij, A. & Roy, R. (1998). Angew. Chem. Int. Ed. Engl. 37, 3394–3397.
- Ramasubbu, N. & Parthasarathy, R. (1987). Phosphorus Sulfur, 31, 221-229.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1997). SHELXL97. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
- Siemens (1994). *SHELXTL*. Release 5.03. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Siemens (1995). SMART. Software Reference Manual. Version 4.050. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

- Spek, A. L. (1992). PLUTON. Molecular Graphics Program. University of Utrecht, The Netherlands.
- Zimmerman, H. E. & Schuster, D. I. (1962). J. Am. Chem. Soc. 84, 4527–4540.